Duality (electrical circuits)

In electrical engineering, electrical terms are associated into pairs called duals. A dual of a relationship is formed by interchanging voltage and current in an expression. The dual expression thus produced is of the same form, and the reason that the dual is always a valid statement can be traced to the duality of electricity and magnetism.

Here is a partial list of electrical dualities:

  • voltage – current
  • parallel – serial (circuits)
  • resistance – conductance
  • voltage division – current division
  • impedance – admittance
  • capacitance – inductance
  • reactance – susceptance
  • short circuit – open circuit
  • Kirchhoff's current law – Kirchhoff's voltage law.
  • Thévenin's theorem – Norton's theorem

HistoryEdit

The use of duality in circuit theory is due to Alexander Russell who published his ideas in 1904.[1][2]

ExamplesEdit

Constitutive relationsEdit

  • Resistor and conductor (Ohm's law)
v=iR\iff i=vG\,
  • Capacitor and inductor – differential form
i_{C}=C{\frac  {d}{dt}}v_{C}\iff v_{L}=L{\frac  {d}{dt}}i_{L}
  • Capacitor and inductor – integral form
v_{C}(t)=V_{0}+{1 \over C}\int _{{0}}^{{t}}i_{C}(\tau )\,d\tau \iff i_{L}(t)=I_{0}+{1 \over L}\int _{{0}}^{{t}}v_{L}(\tau )\,d\tau

Voltage division — current divisionEdit

v_{{R_{1}}}=v{\frac  {R_{1}}{R_{1}+R_{2}}}\iff i_{{G_{1}}}=i{\frac  {G_{1}}{G_{1}+G_{2}}}

Impedance and admittanceEdit

  • Resistor and conductor
Z_{R}=R\iff Y_{G}=G
Z_{G}={1 \over G}\iff Y_{R}={1 \over R}
  • Capacitor and inductor
Z_{C}={1 \over Cs}\iff Y_{L}={1 \over Ls}
Z_{L}=Ls\iff Y_{c}=Cs

This article uses material from the Wikipedia article
 Metasyntactic variable, which is released under the 
Creative Commons
Attribution-ShareAlike 3.0 Unported License
.